Physics and Astronomy Publications
Document Type
Article
Publication Date
2013
Journal
Langmuir
Volume
29
Issue
22
URL with Digital Object Identifier
https://doi.org/10.1021/la401421h
Abstract
The structural arrangement of type I collagen in vivo is critical for the normal functioning of tissues, such as bone, cornea, tendons and blood vessels. At present, there are no established low-cost techniques for fabricating aligned collagen structures for applications in regenerative medicine. Here, we report on a straightforward approach to fabricate collagen films, with defined orientation distributions of collagen fibrillar aggregates within a matrix of oriented collagen molecules on flat sample surfaces. Langmuir Blodgett (LB) technology was used to deposit thin films of oriented type I collagen onto flat substrates exhibiting various shapes. By varying the shapes of the substrates (e.g. rectangles, squares, circles, parallelograms, and various shaped triangles) as well as their sizes, a systematic study on collagen alignment patterns was conducted. It was found that the orientation and the orientation distribution of collagen along these various shaped substrates is directly depending on the geometry of the substrate and the dipping direction of that sample with respect to the collagen/water subphase.
An important factor in tissue engineering is the stability, durability and endurance of the constructed artificial tissue, and thus its functioning in regenerative medicine applications. By testing these criteria we found that the coated films and their alignments were stable for at least three months under different conditions and, moreover, that these films can withstand temperatures of up to 60°C for a short time. Therefore, these constructs may have widespread applicability in the engineering of collagen-rich tissues.