Physics and Astronomy Publications
Document Type
Article
Publication Date
9-2017
Journal
Journal of Photonics for Energy
Volume
7
Issue
3
URL with Digital Object Identifier
https://doi.org/10.1117/1.JPE.7.035504
Abstract
Harvesting solar energy is a promising solution toward meeting the world’s evergrowing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic–inorganic solar cells with tremendous potential for commercial application, but they are plagued by in efficiency due to their poor sunlight absorption. Plasmonic silver nanoparticles (AgNPs) have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance can cause thermal damage resulting in cell deterioration. Hence, the influence of Zr-doped TiO2 on the efficiency of plasmon-enhanced DSSCs was studied, showing that 5 mol.% Zr-doping of the photoactive TiO2 material can improve the photovoltaic performance of DSSCs by 44%. By examining three different DSSC designs, it became clear that the efficiency enhancing effect of Zr strongly depends on the proximity of the Zr-doped material to the plasmonic AgNPs.