Physics and Astronomy Publications


Herschel Spectroscopy of the Taffy Galaxies (UGC 12914/12915 = VV 254): Enhanced [C II] Emission in the Collisionally Formed Bridge

Document Type


Publication Date



Astrophysical Journal





URL with Digital Object Identifier



Using the PACS and SPIRE spectrometers on board Herschel, we obtained observations of the Taffy galaxies (UGC 12914/12915) and bridge. The Taffy system is believed to be the result of a face-on collision between two gas-rich galaxies, in which the stellar disks passed through each other, but the gas was dispersed into a massive H i and molecular bridge between them. Emission is detected and mapped in both galaxies and the bridge in the [C ii]157.7 μm and [O i]63.2 μm fine-structure lines. Additionally, SPIRE FTS spectroscopy detects the [C i] and [C i] neutral carbon lines, and weakly detects high-J CO transitions in the bridge. These results indicate that the bridge is composed of a warm multi-phase medium consistent with shock and turbulent heating. Despite low star formation rates in the bridge, the [C ii] emission appears to be enhanced, reaching [C ii]/FIR ratios of 3.3% in parts of the bridge. Both the [C ii] and [O i] lines show broad intrinsic multi-component profiles, similar to those seen in previous CO (1-0) and H i observations. The [C ii] emission shares similar line profiles with both the double-peaked H i profiles and shares a high-velocity component with single-peaked CO profiles in the bridge, suggesting that the [C ii] emission originates in both the neutral and molecular phases. We show that it is feasible that a combination of turbulently heated H2 and high column-density H i, resulting from the galaxy collision, is responsible for the enhanced [C ii] emission.

This document is currently not available here.