Date of Award

2009

Degree Type

Thesis

Degree Name

Doctor of Philosophy

Program

Computer Science

Supervisor

Mark Daley

Second Advisor

Kai Salomaa

Abstract

We investigate various questions related to the shuffle operation on words and finite languages.

First we investigate a special variant of the shuffle decomposition problem for regular languages, namely, when the given regular language is the shuffle of finite languages. The shuffle decomposition into finite languages is, in general not unique. Thatis,therearelanguagesL^,L2,L3,L4withLiluL2= £3luT4but{L\,L2}^

{I/3, L4}. However, if all four languages are singletons (with at least two combined letters), it follows by a result of Berstel and Boasson [6], that the solution is unique; that is {L\,L2} = {L3,L4}. We extend this result to show that if L\ and L2 are arbitrary finite sets and Lz and Z-4 are singletons (with at least two letters in each), the solution is unique. This is as strong as it can be, since we provide examples showing that the solution can be non-unique already when (1) both L\ and L2 are singleton sets over different unary alphabets; or (2) L\ contains two words and L2 is singleton.

We furthermore investigate the size of shuffle automata for words. It was shown by Campeanu, K. Salomaa and Yu in [11] that the minimal shuffle automaton of two regular languages requires 2mn states in the worst case (where the minimal automata of the two component languages had m and n states, respectively). It was also recently shown that there exist words u and v such that the minimal shuffle

iii

DFA for u and v requires an exponential number of states. We study the size of shuffle DFAs for restricted cases of words, namely when the words u and v are both periods of a common underlying word. We show that, when the underlying word obeys certain conditions, then the size of the minimal shuffle DFA for u and v is at most quadratic.

Moreover we provide an efficient algorithm, which decides for a given DFA A and two words u and v, whether u lu u C L(A).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.