"A Doubly-Fed Induction Generator (DFIG)-Based Wind-Power System with I" by Faruk Ahmed Bhuiyan

Date of Award

2009

Degree Type

Thesis

Degree Name

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Professor Amimaser Yazdani

Abstract

Electrification of off-grid remote communities is commonly accomplished through diesel generators. The method may even be employed in cases where there exists an un­ reliable connection to the power grid. Regardless, the method is environmentally-hostile, typically costly, and likely risky. Therefore, to mitigate the reliance on diesel fuel, uti­ lization of renewable energy resources has been considered in recent years. This thesis investigates the feasibility of and technical considerations involved in the employment of a specific class of variable-speed wind-power systems, integrated with battery energy stor­ age, for remote electrification applications.

The wind-power system under consideration is based on the doubly-fed induction gen­ erator (DFIG) technology, which features a number of characteristics that render it at­ tractive for the incorporation of battery energy storage. This thesis identifies the control strategy, different control sub-functions, and the controllers structures/parametes required to accommodate the battery energy storage. The developed control strategy enables the operation of the wind-power/storage system in the off-grid (islanded) mode of operation, as well as the grid-connected mode of operation. Under the developed control strategy, the wind-power/storage system can operate in parallel with constant-speed wind-power units, passive loads, and induction motor loads. The effectiveness of the proposed control strategy has been demonstrated through comprehensive simulation studies enabled by the commercial software package PSCAD/EMTDC.

In addition to the control aspects, this thesis studies the reliability aspects of the pro­ posed wind-power/storage system, for an example remote electrification system. Thus, a new reliability assessment method has been developed in this thesis, which combines the existing analytical and simulation-based probabilistic approaches. The reliability analysis conducted indicates that the battery energy storage capacity, the wind magnitude and pro­ file, and the load profile impose remarkable impacts on the reliability of the electrification system. It also indicates that a connection to the power grid, however unreliable, signifi­ cantly mitigates the need for a large battery to achieve a given degree of reliability.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.