Date of Award
2011
Degree Type
Thesis
Degree Name
Master of Engineering Science
Program
Electrical and Computer Engineering
Supervisor
Dr. Xianbin Wang
Abstract
Location-awareness is emerging as a promising technique for future-generation wire less network to adaptively enhance and optimize its overall performance through location-enabled technologies such as location-assisted transceiver reconfiguration and routing. The availability of accurate location information of mobile users becomes the essential prerequisite for the design of such location-aware networks. Motivated by the low locationing accuracy of the Global Positioning System (GPS) in dense multipath environments, which is commonly used for acquiring location information in most of the existing wireless networks, wireless communication system-based positioning systems have been investigated as alternatives to fill the gap of the GPS in coverage. Distance-based location techniques using time-of-arrival (TOA) measurements are commonly preferred by broadband wireless communications where the arrival time of the signal component of the First Arriving Path (FAP) can be converted to the distance between the receiver and the transmitter with known location. With at least three transmitters, the location of the receiver can be determined via trilatération method. However, identification of the FAP’s signal component in dense multipath scenarios is quite challenging due to the significantly weaker power of the FAP as compared with the Later Arriving Paths (LAPs) from scattering, reflection and refraction, and the superposition of these random arrival LAPs’ signal compo nents will become large interference to detect the FAP. In this thesis, a robust FAP detection scheme based on multipath interference cancellation is proposed to im prove the accuracy of location estimation in dense multipath environments. In the proposed algorithm, the signal components of LAPs is reconstructed based on the estimated channel and data with the assist of the communication receiver, and sub sequently removed from the received signal. Accurate FAP detection results are then achieved with the cross-correlation between the interference-suppressed signal and an augmented preamble which is the combination of the original preamble for com munications and the demodulated data sequences. Therefore, more precise distance estimation (hence location estimation) can be obtained with the proposed algorithm for further reliable network optimization strategy design.
On the other hand, multiceli cooperative communication is another emerging technique to substantially improve the coverage and throughput of traditional cellular networks. Location-awareness also plays an important role in the design and implementation of multiceli cooperation technique. With accurate location information of mobile users, the complexity of multiceli cooperation algorithm design can be dramatically reduced by location-assisted applications, e.g., automatic cooperative base station (BS) determination and signal synchronization. Therefore, potential latency aroused by cooperative processing will be minimized. Furthermore, the cooperative BSs require the sharing of certain information, e.g., channel state information (CSI), user data and transmission parameters to perform coordination in their signaling strategies. The BSs need to have the capabilities to exchange available information with each other to follow up with the time-varying communication environment. As most of broadband wireless communication systems are already orthogonal frequency division multiplexing (OFDM)-based, a Multi-Layered OFDM System, which is specially tailored for multiceli cooperation is investigated to provide parallel robust, efficient and flexible signaling links for BS coordination purposes. These layers are overlaid with data-carrying OFDM signals in both time and frequency domains and therefore, no dedicated radio resources are required for multiceli cooperative networks.
In the final aspect of this thesis, an enhanced channel estimation through itera tive decision-directed method is investigated for OFDM system, which aims to provide more accurate estimation results with the aid of the demodulated OFDM data. The performance of traditional training sequence-based channel estimation is often lim ited by the length of the training. To achieve acceptable estimation performance, a long sequence has to be used which dramatically reduces the transmission efficiency of data communication. In this proposed method, the restriction of the training sequence length can be removed and high channel estimation accuracy can be achieved with high transmission efficiency, and therefore it particular fits in multiceli cooperative networks. On the other hand, as the performance of the proposed FAP detection scheme also relies on the accuracy of channel estimation and data detection results, the proposed method can be combined with the FAP detection scheme to further optimize the accuracy of multipath interference cancellation and FAP detection.
Recommended Citation
Yang, Jiaxin, "Enabling Technology and Algorithm Design for Location-Aware Communications" (2011). Digitized Theses. 3355.
https://ir.lib.uwo.ca/digitizedtheses/3355