Location
London
Event Website
http://www.csce2016.ca/
Description
Existing scales for natural disasters describe severity in terms of intensity. Intensity scales are not highly correlated with impact factors such as fatalities, injuries, homelessness, affected population, and cost of damage. The descriptive words for disasters are also not sufficient to clearly comprehend the real magnitude of severity as there is no consistent method to distinguish one terminology from another. Further, data collection standards vary among countries and, therefore, comparisons across space and time are difficult to make. Several discrepancies between various sources of information complicate the interpretation of trends in disaster data. Furthermore, comparing different events and obtaining a sense of scale are problematic due to the deficiencies that reduce the quality of the data set, and disaster managers may face inconsistencies in identifying the magnitude of a disaster, responding to the event properly, and allocating resources for mitigation measures. There is no scale currently that is supported with data that can rate the severity of any natural disaster. This ongoing study attempts to develop a multidimensional scale. It also proposes a unified way of describing disasters by focusing on clear definitions, analyzing extreme events, and developing a set of criteria to make comparisons and rank natural disasters based on their impact, to help governments and relief agencies respond when disaster strikes. An initial severity scale based on fatalities is used to compare and rate disasters such as earthquake, tsunami, volcano and tornado. This concept can be applied to any type of disaster including windstorms, snowstorms, and wildfires.
Included in
NDM-528: AN APPROACH TO CLASSIFICATION OF NATURAL DISASTERS BY SEVERITY
London
Existing scales for natural disasters describe severity in terms of intensity. Intensity scales are not highly correlated with impact factors such as fatalities, injuries, homelessness, affected population, and cost of damage. The descriptive words for disasters are also not sufficient to clearly comprehend the real magnitude of severity as there is no consistent method to distinguish one terminology from another. Further, data collection standards vary among countries and, therefore, comparisons across space and time are difficult to make. Several discrepancies between various sources of information complicate the interpretation of trends in disaster data. Furthermore, comparing different events and obtaining a sense of scale are problematic due to the deficiencies that reduce the quality of the data set, and disaster managers may face inconsistencies in identifying the magnitude of a disaster, responding to the event properly, and allocating resources for mitigation measures. There is no scale currently that is supported with data that can rate the severity of any natural disaster. This ongoing study attempts to develop a multidimensional scale. It also proposes a unified way of describing disasters by focusing on clear definitions, analyzing extreme events, and developing a set of criteria to make comparisons and rank natural disasters based on their impact, to help governments and relief agencies respond when disaster strikes. An initial severity scale based on fatalities is used to compare and rate disasters such as earthquake, tsunami, volcano and tornado. This concept can be applied to any type of disaster including windstorms, snowstorms, and wildfires.
https://ir.lib.uwo.ca/csce2016/London/NaturalDisasterMitigation/20