Faculty

Science

Supervisor Name

Paula J Foster

Keywords

proliferation, dilution, Magnetic particle imaging, cell viability, relaxometry, relaxation, Ferucarbotran, Néel, resolution, sensitivity, signal intensity, breast cancer cells, in vitro, in vivo, sonicated, Mesenchymal stem cells, lysed, MRI, histology, superparamagnetic iron oxide, cell tracking, cell viability, Brownian and Neel

Description

Magnetic particle imaging (MPI) is an emerging modality that directly detects SPIOs.our first aim is to quantify the dilution of SPIOs in breast cancer cells in vitro using MPI. MPI signal is generated from a combination of Néel (internal rotation of magnetization) and Brownian (physical rotation of nanoparticle) relaxation. Brownian relaxation of SPIO is influenced by the nanoparticle’s surroundings and we hypothesize this may have implications for detecting partially immobilized intracellular SPIOs. A second aim is to determine how MPI signal and resolution change when SPIOs are intracellular (live cells) compared to free SPIOs (lysed cells).

A reduction in MPI signal was measured from SPIO-labeled 4T1 cells following proliferation in vitro. Our measurements of intracellular iron are in close agreement with a theoretical reduction of 66%( day 1) and 87% (day 2). Future work will examine this in vivo. As ferucarbotran was incorporated into MSC, a reduction in MPI sensitivity and improvement in resolution were measured for lysed cells. MPI cell tracking is in its infancy and these studies contribute important knowledge towards monitoring proliferative cells in vivo and optimizing resolution and sensitivity for cell detection

Acknowledgements

Western University - Undergraduate Summer Research Internship

Robarts Research Institute

Document Type

Poster

Included in

Biophysics Commons

Share

COinS
 

Exploring sensitivity and resolution for cell tracking with Magnetic Particle Imaging: the effects of cell proliferation and intracellular nanoparticle relaxation

Magnetic particle imaging (MPI) is an emerging modality that directly detects SPIOs.our first aim is to quantify the dilution of SPIOs in breast cancer cells in vitro using MPI. MPI signal is generated from a combination of Néel (internal rotation of magnetization) and Brownian (physical rotation of nanoparticle) relaxation. Brownian relaxation of SPIO is influenced by the nanoparticle’s surroundings and we hypothesize this may have implications for detecting partially immobilized intracellular SPIOs. A second aim is to determine how MPI signal and resolution change when SPIOs are intracellular (live cells) compared to free SPIOs (lysed cells).

A reduction in MPI signal was measured from SPIO-labeled 4T1 cells following proliferation in vitro. Our measurements of intracellular iron are in close agreement with a theoretical reduction of 66%( day 1) and 87% (day 2). Future work will examine this in vivo. As ferucarbotran was incorporated into MSC, a reduction in MPI sensitivity and improvement in resolution were measured for lysed cells. MPI cell tracking is in its infancy and these studies contribute important knowledge towards monitoring proliferative cells in vivo and optimizing resolution and sensitivity for cell detection

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.