Physiology and Pharmacology Publications
Document Type
Article
Publication Date
4-19-2017
Journal
Sci Rep
Volume
7
First Page
46525
Last Page
46525
URL with Digital Object Identifier
doi:10.1038/srep46525
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor α, progesterone receptor and human epidermal growth factor receptor 2 (HER2). TNBC patients lack targeted therapies, as they fail to respond to endocrine and anti-HER2 therapy. Prognosis for this aggressive cancer subtype is poor and survival is limited due to the development of resistance to available chemotherapies and resultant metastases. The mechanisms regulating tumor resistance are poorly understood. Here we demonstrate that the G protein-coupled kisspeptin receptor (KISS1R) promotes drug resistance in TNBC cells. KISS1R binds kisspeptins, peptide products of the KISS1 gene and in numerous cancers, this signaling pathway plays anti-metastatic roles. However, in TNBC, KISS1R promotes tumor invasion. We show that KISS1 and KISS1R mRNA and KISS1R protein are upregulated in TNBC tumors, compared to normal breast tissue. KISS1R signaling promotes drug resistance by increasing the expression of efflux drug transporter, breast cancer resistance protein (BCRP) and by inducing the activity and transcription of the receptor tyrosine kinase, AXL. BCRP and AXL transcripts are elevated in TNBC tumors, compared to normal breast, and TNBC tumors expressing KISS1R also express AXL and BCRP. Thus, KISS1R represents a potentially novel therapeutic target to restore drug sensitivity in TNBC patients.