Paediatrics Publications

A Two-Minute Paper-and-Pencil Test of Symbolic and Nonsymbolic Numerical Magnitude Processing Explains Variability in Primary School Children's Arithmetic Competence

Document Type

Article

Publication Date

7-2-2013

Journal

PLoS ONE

Volume

8

Issue

7

URL with Digital Object Identifier

10.1371/journal.pone.0067918

Abstract

Recently, there has been a growing emphasis on basic number processing competencies (such as the ability to judge which of two numbers is larger) and their role in predicting individual differences in school-relevant math achievement. Children's ability to compare both symbolic (e.g. Arabic numerals) and nonsymbolic (e.g. dot arrays) magnitudes has been found to correlate with their math achievement. The available evidence, however, has focused on computerized paradigms, which may not always be suitable for universal, quick application in the classroom. Furthermore, it is currently unclear whether both symbolic and nonsymbolic magnitude comparison are related to children's performance on tests of arithmetic competence and whether either of these factors relate to arithmetic achievement over and above other factors such as working memory and reading ability. In order to address these outstanding issues, we designed a quick (2 minute) paper-and-pencil tool to assess children's ability to compare symbolic and nonsymbolic numerical magnitudes and assessed the degree to which performance on this measure explains individual differences in achievement. Children were required to cross out the larger of two, single-digit numerical magnitudes under time constraints. Results from a group of 160 children from grades 1-3 revealed that both symbolic and nonsymbolic number comparison accuracy were related to individual differences in arithmetic achievement. However, only symbolic number comparison performance accounted for unique variance in arithmetic achievement. The theoretical and practical implications of these findings are discussed which include the use of this measure as a possible tool for identifying students at risk for future difficulties in mathematics. © 2013 Nosworthy et al.

This document is currently not available here.

Share

COinS