Paediatrics Publications
Document Type
Article
Publication Date
6-7-2018
Journal
Aging (Albany NY)
Volume
10
Issue
6
First Page
1223
Last Page
1238
URL with Digital Object Identifier
https://doi.org/10.18632/aging.101462
Abstract
ATRX is an ATP‐dependent chromatin remodeler required for the maintenance of genomic integrity. We previously reported that conditional Atrx ablation in the mouse embryonic forebrain and anterior pituitary using the Foxg1cre driver causes reduced health and lifespan. In these mice, premature aging‐like phenotypes were accompanied by low circulating levels of insulin‐like growth factor 1 (IGF‐1) and thyroxine (T4), hormones that maintain stem cell pools and normal metabolic profiles, respectively. Based on emerging evidence that T4 stimulates expression of IGF‐1 in pre‐pubertal mice, we tested whether T4 supplementation in Atrx Foxg1cre mice could restore IGF‐1 levels and ameliorate premature aging‐like phenotypes. Despite restoration of normal serum T4 levels, we did not observe improvements in circulating IGF‐1. In the liver, thyroid hormone target genes were differentially affected upon T4 treatment, with Igf1 and several other thyroid hormone responsive genes failing to recover normal expression levels. These findings hinted at Cre‐mediated Atrx inactivation in the liver of Atrx Foxg1cre mice, which we confirmed. We conclude that the phenotypes observed in the Atrx Foxg1cre mice can be explained in part by a role of ATRX in the liver to promote T4‐mediated Igf1 expression, thus explaining the inefficacy of T4 therapy observed in this study.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Notes
Article originally published at Aging, Vol. 10(6)
https://doi.org/10.18632/aging.101462
© 2018 The author(s)