Paediatrics Publications
Document Type
Article
Publication Date
4-1-2019
Journal
Biology of Reproduction
Volume
100
Issue
4
First Page
872
Last Page
884
URL with Digital Object Identifier
10.1093/biolre/ioy249
Abstract
Mechanistic target of rapamycin (mTOR) signaling functions as a central regulator of cellular metabolism, growth, and survival in response to hormones, growth factors, nutrients, energy, and stress signals. Mechanistic TOR is therefore critical for the growth of most fetal organs, and global mTOR deletion is embryonic lethal. This review discusses emerging evidence suggesting that mTOR signaling also has a role as a critical hub in the overall homeostatic control of fetal growth, adjusting the fetal growth trajectory according to the ability of the maternal supply line to support fetal growth. In the fetus, liver mTOR governs the secretion and phosphorylation of insulin-like growth factor binding protein 1 (IGFBP-1) thereby controlling the bioavailability of insulin-like growth factors (IGF-I and IGF-II), which function as important growth hormones during fetal life. In the placenta, mTOR responds to a large number of growth-related signals, including amino acids, glucose, oxygen, folate, and growth factors, to regulate trophoblast mitochondrial respiration, nutrient transport, and protein synthesis, thereby influencing fetal growth. In the maternal compartment, mTOR is an integral part of a decidual nutrient sensor which links oxygen and nutrient availability to the phosphorylation of IGFBP-1 with preferential effects on the bioavailability of IGF-I in the maternal-fetal interface and in the maternal circulation. These new roles of mTOR signaling in the regulation fetal growth will help us better understand the molecular underpinnings of abnormal fetal growth, such as intrauterine growth restriction and fetal overgrowth, and may represent novel avenues for diagnostics and intervention in important pregnancy complications.