Paediatrics Publications
Document Type
Article
Publication Date
1-1-2013
Journal
Contrast Media and Molecular Imaging
Volume
8
Issue
1
First Page
72
Last Page
82
URL with Digital Object Identifier
10.1002/cmmi.1497
Abstract
A new noninvasive, nonradioactive approach for glucose imaging using spin hyperpolarization technology and stable isotope labeling is presented. A glucose analog labeled with 13C at all six positions increased the overall hyperpolarized imaging signal; deuteration at all seven directly bonded proton positions prolonged the spin-lattice relaxation time. High-bandwidth 13C imaging overcame the large glucose carbon chemical shift dispersion. Hyperpolarized glucose images in the live rat showed time-dependent organ distribution patterns. At 8s after the start of bolus injection, the inferior vena cava was demonstrated at angiographic quality. Distribution of hyperpolarized glucose in the kidneys, vasculature, and heart was demonstrated at 12 and 20s. The heart-to-vasculature intensity ratio at 20s suggests myocardial uptake. Cancer imaging, currently performed with 18F-deoxyglucose positron emission tomography (FDG-PET), warrants further investigation, and glucose imaging could be useful in a vast range of clinical conditions and research fields where the radiation associated with the FDG-PET examination limits its use. © 2012 John Wiley & Sons, Ltd.