Paediatrics Publications
Document Type
Article
Publication Date
8-4-2010
Journal
Journal of Neuroscience
Volume
30
Issue
31
First Page
10422
Last Page
10430
URL with Digital Object Identifier
10.1523/JNEUROSCI.0024-10.2010
Abstract
Short-term habituation is a basic form of learning that is analyzed in different species and using different behavioral models. Previous studies on mechanisms of short-term habituation yielded evidence for a potential role of group III metabotropic glutamate receptors (mGluRIIIs). Here we tested the hypothesis that mGluRIII mediate short-term habituation of startle in rats, combining electrophysiological experiments in vitro with behavioral studies in vivo. We applied different mGluRIII agonists and antagonists on rat brainstem slices while recording from startle-mediating neurons in the caudal pontine reticular nucleus (PnC) and monitoring synaptic depression presumably underlying habituation. Furthermore, we injected the mGluRIII antagonist (RS)-α-phosphonophenylglycine (MPPG) and the agonist L-(+)-2-amino-4- phosphonobutyric acid (L-AP4) into the PnC of rats in vivo and measured its effect on startle habituation. Our results show that activation of mGluRIIIs in the PnC strongly inhibits startle-mediating giant neurons in vitro. Accordingly, L-AP4 reduced startle responses in vivo. However, synaptic depression in the slice was not disrupted by mGluRIII antagonists or agonists. Correspondingly, the in vivo application of the mGluRIII antagonist MPPG failed to show any effect on short-term habituation of startle responses. We therefore conclude that mGluRs are expressed within the primary startle pathway and that they inhibit startle responses upon activation; however, this inhibition does not play any role in synaptic depression and short-term habituation of startle. This is in contrast to the role of mGluRIIIs in other forms of habituation and supports the notion that there are different mechanisms involved in habituation of sensory-evoked behaviors. Copyright © 2010 the authors.