Paediatrics Publications

Document Type

Article

Publication Date

11-1-2012

Journal

Journal of Pathology

Volume

228

Issue

3

First Page

351

Last Page

365

URL with Digital Object Identifier

10.1002/path.4015

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a 5 year survival rate post-diagnosis of < 5%. Individuals with chronic pancreatitis (CP) are 20-fold more likely to develop PDAC, making it a significant risk factor for PDAC. While the relationship for the increased susceptibility to PDAC is unknown, loss of the acinar cell phenotype is common to both pathologies. Pancreatic acinar cells can dedifferentiate or trans-differentiate into a number of cell types including duct cells, β cells, hepatocytes and adipocytes. Knowledge of the molecular pathways that regulate this plasticity should provide insight into PDAC and CP. MIST1 (encoded by Bhlha15 in mice) is a transcription factor required for complete acinar cell maturation. The goal of this study was to examine the plasticity of acinar cells that do not express MIST1 (Mist1 -/-). The fate of acinar cells from C57Bl6 or congenic Mist1 -/- mice expressing an acinar specific, tamoxifen-inducible Cre recombinase mated to Rosa26 reporter LacZ mice (Mist1CreERT/- R26r) was determined following culture in a three-dimensional collagen matrix. Mist1CreERT/- R26r acini showed increased acinar dedifferentiation, formation of ductal cysts and transient increases in PDX1 expression compared to wild-type acinar cells. Other progenitor cell markers, including Foxa1, Sox9, Sca1 and Hes1, were elevated only in Mist1-/- cultures. Analysis of protein kinase C (PKC) isoforms by western blot and immunofluorescence identified increased PKCε accumulation and nuclear localization of PKCδ that correlated with increased duct formation. Treatment with rottlerin, a PKCδ-specific inhibitor, but not the PKCε-specific antagonist εV1-2, reduced acinar dedifferentiation, progenitor gene expression and ductal cyst formation. Immunocytochemistry on CP or PDAC tissue samples showed reduced MIST1 expression combined with increased nuclear PKCδ accumulation. These results suggest that the loss of MIST1 is a common event during PDAC and CP and events that affect MIST1 function and expression may increase susceptibility to these pathologies. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Share

COinS