Paediatrics Publications

Site Specific Phosphorylation of Insulin-Like Growth Factor Binding Protein-1 (IGFBP-1) for Evaluating Clinical Relevancy in Fetal Growth Restriction

Document Type

Article

Publication Date

11-2009

Journal

Journal of Proteome Research

Volume

8

Issue

11

First Page

5325

Last Page

5335

URL with Digital Object Identifier

10.1021/pr900633x

Abstract

Fetal growth restriction (FGR) is a leading cause of fetal and neonatal morbidity and mortality. Insulin-like growth factor binding protein-1 (IGFBP-1) is one of the major insulin-like growth factor (IGF) binding proteins involved in fetal growth and development. Our recent data shows that phosphorylation of IGFBP-1 carries both functional and biological relevance in FGR. Considering that IGFBP-1 phosphorylation can be valuable in diagnostics, we examined strategies to enrich IGFBP-1 so that its phosphorylation sites could be assessed by mass spectrometry (MS). Using <1 mL of human amniotic>fluid, widely employed immunoprecipitation with IGFBP-1 monoclonal antibody (Mab 6303) coenriched IgGs that interfered with MS. Covalent coupling of Mab 6303 with Seize immunoprecipitation resin (Pierce) mitigated this drawback. However, LC-MS/MS analysis with the titanium dioxide (TiO(2)) enriched IGFBP-1 phosphopeptides in the immunoprecipitated samples revealed pSer101 and pSer119, but not pSer169 nor pSer98 of the previously identified phosphorylation sites. The alternative, ZOOM isoelectric focusing (IEF) (Invitrogen) rendered low-IGFBP-1 recovery with overlapping albumin. Subsequently, depletion of albumin using Affi-GelBlue gel (Bio-Rad) maximized IGFBP-1 yield. ELISA estimation showed approximately 8.5% residual albumin (3.73 x 10(5) +/- 2.35 x 10(5) ng/mL), whereas up to approximately 68% IGFBP-1 was recovered (1.36 x 10(3) +/- 0.174 x 10(3) microg/L, IEMA). LC-MS/MS analysis with the albumin depleted samples detected all four expected phosphorylation sites. Additionally, LC-MS analysis semiquantitatively indicated much reduced phosphopeptide peak intensities, approximately 20-fold with pSer169 and approximately 10-fold lower with pSer98 sites as compared to pSer101. With the use of our depletion strategy, this study offers a novel simple proteomic approach to enrich IGFBP-1 for identification of site-specific changes in IGFBP-1 phosphorylation. This strategy will be vital in performing differential IGFBP-1 phosphorylation profiling clinically, to help establish its link with FGR and develop diagnostic assays, as well as elucidating novel mechanisms potentially involved in regulation of fetal growth.

Find in your library

Share

COinS