Oncology Publications
Title
Quality assurance of radiation therapy planning systems: current status and remaining challenges.
Document Type
Article
Publication Date
5-2008
Journal
International journal of radiation oncology, biology, physics
Volume
71
Issue
1 Suppl
First Page
23
Last Page
27
URL with Digital Object Identifier
http://dx.doi.org/10.1016/j.ijrobp.2007.04.095
Abstract
Computerized radiation therapy planning systems (RTPSs) are pivotal for treatment planning. The acceptance, commissioning, and quality control of RTPSs are uniquely complex and are described in the American Association of Physicists in Medicine Task Group Report 53 (1998) and International Atomic Energy Agency Technical Report Series No. 430 (2004). The International Atomic Energy Agency also developed a document and data package for use by vendors and purchasers to aid with acceptance testing of RTPSs. This document is based on International Electrotechnical Commission standard 62083 (2000) and describes both "type" tests to be performed in the factory and "site" tests to be performed in the clinic. The American Association of Physicists Task Group Report 67 described benchmark tests for the validation of dose calculation algorithms. Test data are being produced with the backing of the U.S. National Cancer Institute. However, significant challenges remain. Technology keeps evolving rapidly, thus requiring new quality assurance (QA) procedures. Intensity-modulated radiation therapy with its use of inverse optimization has added a new dimension to QA, because the results are not intuitively obvious. New technologies such as real-time ultrasound guidance for brachytherapy, TomoTherapy, and Cyberknife, require their own specialized RTPSs with unique QA requirements. On-line imaging allows for the generation of dose reconstructions using image warping techniques to determine the daily dose delivered to the patient. With increasing computer speeds, real-time reoptimization of treatment plans will become a reality. Gating technologies will require four-dimensional dose calculations to determine the actual dose delivered to tissue voxels. With these rapidly changing technologies, it is essential that a strong QA culture is invoked in every institution implementing these procedures and that new protocols are developed as a part of the clinical implementation process.