Document Type
Article
Publication Date
12-1-2022
Journal
Communications Biology
Volume
5
Issue
1
URL with Digital Object Identifier
10.1038/s42003-022-03949-x
Abstract
Robust frontoparietal connectivity is a defining feature of primate cortical organization. Whether mammals outside the primate order, such as rodents, possess similar frontoparietal functional connectivity organization is a controversial topic. Previous work has primarily focused on comparing mice and rats to primates. However, as these rodents are nocturnal and terrestrial, they rely much less on visual input than primates. Here, we investigated the functional cortical organization of grey squirrels which are diurnal and arboreal, thereby better resembling primate ecology. We used ultra-high field resting-state fMRI data to compute and compare the functional connectivity patterns of frontal regions in grey squirrels (Sciurus carolinensis), rats (Rattus norvegicus), and marmosets (Callithrix jacchus). We utilized a fingerprinting analysis to compare interareal patterns of functional connectivity from seeds across frontal cortex in all three species. The results show that grey squirrels, but not rats, possess a frontoparietal connectivity organization that resembles the connectivity pattern of marmoset lateral prefrontal cortical areas. Since grey squirrels and marmosets have acquired an arboreal way of life but show no common arboreal ancestor, the expansion of the visual system and the formation of a frontoparietal connectivity architecture might reflect convergent evolution driven by similar ecological niches in primates and tree squirrels.