Social factors and the neurobiology of pathogen avoidance
Document Type
Article
Publication Date
1-1-2022
Journal
Biology Letters
Volume
18
Issue
2
URL with Digital Object Identifier
10.1098/rsbl.2021.0371
Abstract
Although the evolutionary causes and consequences of pathogen avoidance have been gaining increasing interest, there has been less attention paid to the proximate neurobiological mechanisms. Animals gauge the infection status of conspecifics and the threat they represent on the basis of various sensory and social cues. Here, we consider the neurobiology of pathogen detection and avoidance from a cognitive, motivational and affective state (disgust) perspective, focusing on the mechanisms associated with activating and directing parasite/pathogen avoidance. Drawing upon studies with laboratory rodents, we briefly discuss aspects of (i) olfactory-mediated recognition and avoidance of infected conspecifics; (ii) relationships between pathogen avoidance and various social factors (e.g. social vigilance, social distancing (approach/avoidance), social salience and social reward); (iii) the roles of various brain regions (in particular the amygdala and insular cortex) and neuromodulators (neurotransmitters, neuropeptides, steroidal hormones and immune components) in the regulation of pathogen avoidance. We propose that understanding the proximate neurobiological mechanisms can provide insights into the ecological and evolutionary consequences of the non-consumptive effects of pathogens and how, when and why females and males engage in pathogen avoidance.