Microbiology & Immunology Publications

Title

Cj1121c, a Novel UDP-4-keto-6-deoxy-GlcNAc C-4 Aminotransferase Essential for Protein Glycosylation and Virulence in Campylobacter Jejuni

Document Type

Article

Publication Date

9-22-2006

Journal

The Journal of Biological Chemistry

Volume

281

Issue

38

First Page

27733

Last Page

27743

URL with Digital Object Identifier

http://dx.doi.org/10.1074/jbc.M511714200

Abstract

Campylobacter jejuni produces glycoproteins that are essential for virulence. These glycoproteins carry diacetamidobacillosamine (DAB), a sugar that is not found in humans. Hence, the enzymes responsible for DAB synthesis represent potential therapeutic targets. We describe the biochemical characterization of Cj1121c, a putative aminotransferase encoded by the general protein glycosylation locus, to assess its role in DAB biosynthesis. By using overexpressed and affinity-purified enzyme, we demonstrate that Cj1121c has pyridoxal phosphate- and glutamate-dependent UDP-4-keto-6-deoxy-GlcNAc C-4 transaminase activity and produces UDP-4-amino-4,6-dideoxy-GlcNAc. This is consistent with a role in DAB biosynthesis and distinguishes Cj1121c from Cj1294, a homologous UDP-2-acetamido-2,6-dideoxy-beta-l-arabino-4-hexulose C-4 aminotransferase that we characterized previously. We show that Cj1121c can also use this 4-keto-arabino sugar indirectly as a substrate, that Cj1121c and Cj1294 are active simultaneously in C. jejuni, and that the activity of Cj1121c is preponderant under standard growth conditions. Kinetic data indicate that Cj1121c has a slightly higher catalytic efficiency than Cj1294 with regard to the 4-keto-arabino substrate. By site-directed mutagenesis, we show that residues Glu-158 and Leu-131 are not essential for catalysis or for substrate specificity contrary to expectations. We further demonstrate that a cj1121c knock-out mutant is impaired for flagella-mediated motility, for invasion of intestinal epithelial cells, and for persistence in the chicken intestine, clearly demonstrating that Cj1121c is essential for host colonization and virulence. Finally, we show that cj1121c is necessary for protein glycosylation by lectin Western blotting. Collectively, these results validate Cj1121c as a promising drug target and provide the means to assay for inhibitors.

Find in your library

Share

COinS