Microbiology & Immunology Publications

Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model

Document Type

Article

Publication Date

5-1-2018

Journal

Applied and Environmental Microbiology

Volume

84

Issue

9

URL with Digital Object Identifier

10.1128/AEM.02820-17

Abstract

Despite the benefits to the global food supply and agricultural economies, pesticides are believed to pose a threat to the health of both humans and wildlife. Chlorpyrifos (CP), a commonly used organophosphate insecticide, has poor target specificity and causes acute neurotoxicity in a wide range of species via the suppression of acetylcholinesterase. This effect is exacerbated 10- to 100-fold by chlorpyrifos oxon (CPO), a principal metabolite of CP. Since many animal-associated symbiont microorganisms are known to hydrolyze CP into CPO, we used a Drosophila melanogaster insect model to investigate the hypothesis that indigenous and probiotic bacteria could affect CP metabolism and toxicity. Antibiotic-treated and germfree D. melanogaster insects lived significantly longer than their conventionally reared counterparts when exposed to 10 μM CP. Drosophila melanogaster gutderived Lactobacillus plantarum, but not Acetobacter indonesiensis, was shown to metabolize CP. Liquid chromatography tandem-mass spectrometry confirmed that the L. plantarum isolate preferentially metabolized CP into CPO when grown in CPspiked culture medium. Further experiments showed that monoassociating germfree D. melanogaster with the L. plantarum isolate could reestablish a conventional-like sensitivity to CP. Interestingly, supplementation with the human probiotic Lactobacillus rhamnosus GG (a strain that binds but does not metabolize CP) significantly increased the survival of the CP-exposed germfree D. melanogaster. This suggests strain-specific differences in CP metabolism may exist among lactobacilli and emphasizes the need for further investigation. In summary, these results suggest that (i) CPO formation by the gut microbiota can have biologically relevant consequences for the host, and (ii) probiotic lactobacilli may be beneficial in reducing in vivo CP toxicity.

This document is currently not available here.

Share

COinS