Department of Medicine Publications
Document Type
Article
Publication Date
1-1-2017
Journal
American Journal of Hypertension
Volume
30
Issue
5
First Page
478
Last Page
483
URL with Digital Object Identifier
10.1093/ajh/hpw167
Abstract
OBJECTIVES Black subjects tend to retain salt and water, be more sensitive to aldosterone, and have suppression of plasma renin activity. Variants of the renal sodium channel (ENaC, SCNN1B) account for approximately 6% of resistant hypertension (RHT) in Blacks; other candidate genes may be important. METHODS Six candidate genes associated with low renin-resistant hypertension were sequenced in Black Africans from clinics in Kenya and South Africa. CYP11B2 was sequenced if the aldosterone level was high (primary aldosteronism phenotype); SCNN1B, NEDD4L, GRK4, UMOD, and NPPA genes were sequenced if the aldosterone level was low (Liddle phenotype). RESULTS There were 14 nonsynonymous variants (NSVs) of CYP11B2: 3 previously described and associated with alterations in aldosterone synthase production (R87G, V386A, and G435S). Out of 14, 9 variants were found in all 9 patients sequenced. There were 4 NSV of GRK4 (R65L, A116T, A142V, V486A): At least one was found in all 9 patients; 3 were previously described and associated with hypertension. There were 3 NSV of SCNN1B (R206Q, G442V, and R563Q); 2 previously described and 1 associated with hypertension. NPPA was found to have 1 NSV (V32M), not previously described and NEDD4L did not have any variants. UMOD had 3 NSV: D25G, L180V, and T585I. CONCLUSIONS A phenotypic approach to investigating the genetic architecture of RHT uncovered a surprisingly high yield of variants in candidate genes. These preliminary findings suggest that this novel approach may assist in understanding the genetic architecture of RHT in Blacks and explain their two fold risk of stroke.