Document Type

Article

Publication Date

7-1-2000

Journal

Stroke; a journal of cerebral circulation

Volume

31

Issue

7

First Page

1672

Last Page

1678

URL with Digital Object Identifier

https://doi.org/10.1161/01.str.31.7.1672

Abstract

BACKGROUND AND PURPOSE: The relationship between middle cerebral artery (MCA) flow velocity (CFV) and cerebral blood flow (CBF) is uncertain because of unknown vessel diameter response to physiological stimuli. The purpose of this study was to directly examine the effect of a simulated orthostatic stress (lower body negative pressure [LBNP]) as well as increased or decreased end-tidal carbon dioxide partial pressure (P(ET)CO(2)) on MCA diameter and CFV.

METHODS: Twelve subjects participated in a CO(2) manipulation protocol and/or an LBNP protocol. In the CO(2) manipulation protocol, subjects breathed room air (normocapnia) or 6% inspired CO(2) (hypercapnia), or they hyperventilated to approximately 25 mm Hg P(ET)CO(2) (hypocapnia). In the LBNP protocol, subjects experienced 10 minutes each of -20 and -40 mm Hg lower body suction. CFV and diameter of the MCA were measured by transcranial Doppler and MRI, respectively, during the experimental protocols.

RESULTS: Compared with normocapnia, hypercapnia produced increases in both P(ET)CO(2) (from 36+/-3 to 40+/-4 mm Hg, P

CONCLUSIONS: Under the conditions of this study, changes in MCA diameter were not detected. Therefore, we conclude that relative changes in CFV were representative of changes in CBF during the physiological stimuli of moderate LBNP or changes in P(ET)CO(2).

Find in your library

Included in

Kinesiology Commons

COinS