
A Novel Method for Determining the Inherent Capabilities of Computer and Robotic-Assisted Total Knee Arthroplasty Devices
Abstract
This thesis presents a method for evaluating and comparing assistive total knee arthroplasty (TKA) devices while controlling surgeon landmarking variability. To achieve consistent landmark selection by surgeons during TKA procedures, the method uses identical 3D-printed knees with indented landmarks. This method was used to compare a robotic and computer-assisted TKA device on three metrics: measurement accuracy, alignment accuracy, and cut-surface uniformity. Although both devices had considerable sagittal plane measurement errors, the robotic device had better measurement and alignment accuracy than the computer-assisted device. Furthermore, the robotic device's measuring error compensated for cutting errors, but the computer-assisted device's compounded them. However, both techniques were equally able to maintain small bone-implant gaps. This thesis demonstrates that this new method can be used to draw conclusions about the inherent capabilities and limitations of robotic and computer-assisted TKA devices.