Electronic Thesis and Dissertation Repository

DISENTANGLING THE ROLE OF PARVALBUMIN-EXPRESSING INTERNEURONS IN STIMULUS-RESPONSE LEARNING AND COGNITIVE FLEXIBILITY

Harleen Rai, The University of Western Ontario

Abstract

Habits enable animals to efficiently navigate their surroundings while tending to more cognitively demanding environmental factors. One mechanism underlying habit is known as stimulus-response (S-R) learning, which takes place in the dorsolateral striatum (DLS). However, there is limited knowledge regarding the complex striatal microcircuits involved in S-R learning and cognitive flexibility. Recently, attention has turned toward the GABAergic Parvalbumin-expressing (PV) interneurons that can modulate striatal outputs. Here, we utilized chemogenetic techniques and touchscreen cognitive assessments to analyze the influence of PV neurons on S-R learning in mice. When PV neurons were inhibited, during the acquisition of a S-R and cognitive flexibility cognitive assessment, there were no significant differences in the percent accuracy. Further exploratory analysis, however, revealed a significant difference in the male mice but not the female mice between the experimental groups for the acquisition of the S-R task. Furthermore, PV neuron inhibition did not affect performance of a previously acquired S-R task. These findings contribute to our understanding of what mechanisms are and are not necessary for the various cognitive functions in which the dorsal striatum is involved.