Electronic Thesis and Dissertation Repository

Decoy-Target Database Strategy and False Discovery Rate Analysis for Glycan Identification

Xiaoou Li

Abstract

In recent years, the technology of glycopeptide sequencing through MS/MS mass spectrometry data has achieved remarkable progress. Various software tools have been developed and widely used for protein identification. Estimation of false discovery rate (FDR) has become an essential method for evaluating the performance of glycopeptide scoring algorithms. The target-decoy strategy, which involves constructing decoy databases, is currently the most popular utilized method for FDR calculation. In this study, we applied various decoy construction algorithms to generate decoy glycan databases and proposed a novel approach to calculate the FDR by using the EM algorithm and mixture model.