Electronic Thesis and Dissertation Repository

Generating Polynomials of Exponential Random Graphs

Mohabat Tarkeshian, The University of Western Ontario

Abstract

The theory of random graphs describes the interplay between probability and graph theory: it is the study of the stochastic process by which graphs form and evolve. In 1959, Erdős and Rényi defined the foundational model of random graphs on n vertices, denoted G(n, p) ([ER84]). Subsequently, Frank and Strauss (1986) added a Markov twist to this story by describing a topological structure on random graphs that encodes dependencies between local pairs of vertices ([FS86]). The general model that describes this framework is called the exponential random graph model (ERGM).

In the past, determining when a probability distribution has strong negative dependence has proven to be difficult ([Pem00, BBL09]). The negative dependence of a probability distribution is characterized by properties of its corresponding generating polynomial ([BBL09]). This thesis bridges the theory of exponential random graphs with the geometry of their generating polynomials, namely, when and how they satisfy the stable or Lorentzian properties ([Wag09, BBL09, BH20, AGV21]). We provide necessary and sufficient conditions as well as full characterizations of the parameter space for when this model has a stable or Lorentzian generating polynomial. This is done using a well-developed dictionary between probability distributions and their corresponding multiaffine generating polynomials.

In particular, we characterize when the generating polynomial of a random graph model with a large symmetry group is irreducible. We assert that the edge parameter of the exponential random graph model does not affect stability and that the triangle and k-star parameters are necessarily related if the model is stable or Lorentzian. We also provide full Lorentzian and stable characterizations for the model on K3 and a Lorentzian characterization for specializations of the model on K4.