
Generating Polynomials of Exponential Random Graphs
Abstract
The theory of random graphs describes the interplay between probability and graph theory: it is the study of the stochastic process by which graphs form and evolve. In 1959, Erdős and Rényi defined the foundational model of random graphs on n vertices, denoted G(n, p) ([ER84]). Subsequently, Frank and Strauss (1986) added a Markov twist to this story by describing a topological structure on random graphs that encodes dependencies between local pairs of vertices ([FS86]). The general model that describes this framework is called the exponential random graph model (ERGM).
In the past, determining when a probability distribution has strong negative dependence has proven to be difficult ([Pem00, BBL09]). The negative dependence of a probability distribution is characterized by properties of its corresponding generating polynomial ([BBL09]). This thesis bridges the theory of exponential random graphs with the geometry of their generating polynomials, namely, when and how they satisfy the stable or Lorentzian properties ([Wag09, BBL09, BH20, AGV21]). We provide necessary and sufficient conditions as well as full characterizations of the parameter space for when this model has a stable or Lorentzian generating polynomial. This is done using a well-developed dictionary between probability distributions and their corresponding multiaffine generating polynomials.
In particular, we characterize when the generating polynomial of a random graph model with a large symmetry group is irreducible. We assert that the edge parameter of the exponential random graph model does not affect stability and that the triangle and k-star parameters are necessarily related if the model is stable or Lorentzian. We also provide full Lorentzian and stable characterizations for the model on K3 and a Lorentzian characterization for specializations of the model on K4.