
The Effect of Kidney Preservation at 10°C with Hemopure and Hydrogen Sulfide Donor, Sodium Thiosulfate, in a Syngeneic Model of Rat Renal Transplantation
Abstract
Kidney transplantation is preferred for patients with end-stage renal disease. The current gold standard for preserving kidneys is static cold storage (SCS) at 4°C in University of Wisconsin (UW) solution. However, SCS contributes to ischemia-reperfusion injury (IRI), which involves cell death and inflammation. Our group showed that SCS of kidneys with hydrogen sulfide donors, like sodium thiosulfate (STS), that reduce tissue injury enhanced kidney survival. Though, there is still a risk of cold renal IRI at 4°C. Recent evidence suggests that preserving organs at 10°C enhanced graft function and survival. Therefore, this thesis will evaluate the effect of 10°C kidney preservation with STS and Hemopure, a clinically viable blood substitute that delivers oxygen to hypoxic tissues. In an in vitro model of rat renal IRI, 10°C STS treatment improved cell viability compared to 4°C conditions. Additionally, 10°C storage of rat renal grafts with STS- and Hemopure-supplemented UW solution improved kidney function and reduced tissue necrosis and apoptosis. Overall, we showed that renal graft preservation at 10°C may be a viable kidney preservation approach to mitigate the risks associated with cold renal IRI.