Electronic Thesis and Dissertation Repository

In Utero Magnetic Resonance Relaxometry for Fetal Tissue Development

Simran Sethi, Western University

Abstract

Fetal life is a significant period of human development because organ systems that sustain life outside the uterus begin to develop during this time. A necessary process that begins during fetal life is myelination, which is the process by which myelin, a lipid-rich substance, is wrapped around neurons in the brain to increase the speed of action potential transmission. Since myelination is critical for the normal function of the central nervous system, fetal myelin assessment is important for understanding neurodevelopment and neurodegeneration, such as intrauterine growth restriction (IUGR).

Magnetic resonance imaging (MRI) is an excellent tool for visualizing fetal anatomy and identifying pathology. Relaxometry quantifies T1, T2, and T2* relaxation times, which are MR parameters that reflect fundamental tissue properties sensitive to the tissue microenvironment, providing an interpretation of images in absolute units. For the first time, fetal tissue T1 and T2* relaxation times were successfully quantified in uncomplicated pregnancies as a function of gestational age (GA) in the third trimester.

A tissue microenvironment that can be investigated by MR relaxometry is myelin water. Myelin water imaging (MWI) uses MR relaxometry to visualize the aqueous components associated with myelin sheath to quantify myelin water fraction (MWF), a validated myelin marker. Moving to a guinea pig model of pregnancy, MWI was successfully conducted in the fetal environment as MWF was quantified in various fetal brain regions late in gestation.

To investigate the effects of IUGR on myelination in utero, MWI was applied in a guinea pig model of natural IUGR late in gestation. MWF was significantly reduced in different brain regions of guinea pigs with IUGR compared to those without IUGR. Furthermore, the study highlighted the utility of MWF as a functional marker for IUGR.

In conclusion, this dissertation demonstrates using MR relaxometry to quantify T1 and T2* relaxation times of fetal tissues throughout pregnancy and assess fetal brain myelin content in both a normal and IUGR environment. The findings demonstrate MR relaxometry's utility in assessing fetal tissue development in utero.