
Investigating the Effect of Intratumoral Modulation Therapy on Breast Cancer Brain Metastases
Abstract
Brain metastases occur in 15-30% of breast cancer patients, severely impeding their survival of these individuals. As cancerous tissue is innately vulnerable to non-ablative electrical fields, our group aims to develop Intratumoral Modulation Therapy (IMT), a treatment that uses bioelectrodes to deliver electric fields to brain tumors and induce cancer cell death. We have previously shown primary brain tumor sensitivity to low-voltage, intermediate-frequency IMT, but the effect on secondary brain tumors has not been investigated. We aim to determine whether breast cancer brain metastases (BCBM) cells are susceptible to IMT in vitro, to show healthy nervous tissue is unaffected by IMT, and to develop a rudimentary rat model of human BCBM for testing IMT in vivo. Cell survival assays revealed BCBM cell sensitivity to IMT and healthy nervous tissue resistance to the treatment. Rats successfully grew human BCBM. Novel treatments for BCBM are needed and IMT holds potential.