Thesis Format
Monograph
Degree
Master of Science
Program
Computer Science
Collaborative Specialization
Artificial Intelligence
Supervisor
Robert E. Mercer
Abstract
Recent NLP advancements have improved the state-of-the-art in well-known datasets and are appealing more attention day by day. However, as the models become more complicated, the ability to provide interpretable and understandable results is becoming harder so the trade-off between accuracy and interpretability is a concern that is yet to be addressed. In this project, the aim is to utilize state-of-the-art NLP models to provide meaningful insight from psychological real-world documents that contain complex structures. The project involves two main chapters each including a different dataset. The first chapter is related to binary classification on a personality detection dataset, while the second one is about sentiment analysis and Topic Modeling of sleep-related reports.
Summary for Lay Audience
Recent advancements in artificial intelligence models that accept textual inputs are becoming more and more accurate. However, because of the differences between the nature of the artificial intelligence models and human functioning, understanding the AI outputs are becoming harder for humans. In this project, the aim is to utilize top AI models in the field of natural language processing to provide meaningful insight from psychological real-world documents that contain complex structures. The project involves two main chapters each including a different dataset. The first chapter is related to binary classification on a personality detection dataset, while the second one is about sentiment analysis and Topic Modeling of sleep-related reports.
Recommended Citation
Kazemeinizadeh, Amirmohammad, "Psychological Understanding of Textual journals using Natural Language Processing approaches" (2022). Electronic Thesis and Dissertation Repository. 8854.
https://ir.lib.uwo.ca/etd/8854