Electronic Thesis and Dissertation Repository

The Effect of Breathing Patterns Common to Competitive Swimming on Gas Exchange and Muscle Deoxygenation During Heavy-Intensity Fartlek Exercise

Kevin J. Grossman, The University of Western Ontario

Abstract

The purpose of this study was to compare the respiratory and muscle deoxygenation (HHb) responses of regulated breathing versus free-breathing, during continuous exercise (CONLD) and intermittent 5s breath holds (BH) (CONLD-BH), intermittent 5s sprint (FLK) and combined 5s BH and sprint (FLK-BH) followed by 25s of free-breathing. Oxygen uptake(V̇O2)was unchanged between CONLD (2.12±0.35L/min) and CONLD-BH (2.15±0.42L/min; p=0.116), and FLK (2.24±0.40L/min) and FLK-BH (2.20±0.45L/min; p=0.861). Δ[Hbtot]: CONLD (3.3±1.6µM) > CONLD-BH (-2.5±1.2µM; ∆177%; p<0.001), but unchanged between FLK (2.0±1.6µM) and FLK-BH (0.82±1.4µM; p=0.979). Δ[HHb]: CONLD (7.3±1.8µM) > CONLD-BH (7.0±2.0µM; ∆4%; p=0.011), and FLK (6.7±1.8µM) < FLK-BH (8.7±2.4µM; p<0.001). It is suggested that the unchanged V̇O2 between CONLD and CONLD-BH was supported by increased deoxygenation, reflected by decreased ∆[Hbtot] and blunted ∆[HHb], via apneic-driven redistribution of blood flow away from working muscles, which is reflected by the decreased SatO2. However, the preserved V̇O2 during FLK-BH versus FLK has been underpinned by the increase [HHb].