Electronic Thesis and Dissertation Repository

Self-sustaining Smouldering Combustion of Granular Activated Carbon Contaminated with Per- and Polyfluoroalkyl Substances – Fluorine Mass Balance and Enhanced Methods of Mineralization

Brian Gerald Harrison, The University of Western Ontario

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a large group of anthropogenic compounds. Long-term use has led to widespread environmental contamination, and PFAS source zones will require cleanup.

Self-sustaining Treatment for Active Remediation (STAR) is a thermal treatment technology that employs smouldering combustion as a method of soil treatment. Smouldering can be self-sustaining and is thus more energy-efficient. Previous research applying STAR to PFAS-contaminated soil and granular activated carbon (GAC) showed promise, as PFAS were removed from soil.

This study clarified the potential of STAR as a treatment option for PFAS. This study is unique in how thoroughly it characterized the fluorine mass balance of the thermal system and demonstrated how calcium oxide as a soil amendment would limit the release of potentially harmful byproducts. Furthermore, it demonstrated a high degree of PFAS mineralization. Altogether, this study provides both new science and engineering options for effective smouldering treatment of PFAS-contaminated soils.