Electronic Thesis and Dissertation Repository

Predicting and Modifying Memorability of Images

Mohammad Younesi, The University of Western Ontario

Abstract

Everyday, we are bombarded with many photographs of faces, whether on social media, television, or smartphones. From an evolutionary perspective, faces are intended to be remembered, mainly due to survival and personal relevance. However, all these faces do not have the equal opportunity to stick in our minds. It has been shown that memorability is an intrinsic feature of an image but yet, it is largely unknown what attributes make an image more memorable. In this work, we first proposed new models for predicting memorability of face and object images. Subsequently, we proposed a fast approach to modify and control the memorability of face images. In our proposed method, we first found a hyperplane in the latent space of StyleGAN to separate high and low memorable images. We then modified the image memorability (while maintaining the identity and other facial features such as age, emotion, etc.) by moving in the positive or negative direction of this hyperplane normal vector. We further analyzed how different layers of the StyleGAN augmented latent space contribute to face memorability. These analyses showed how each individual face attribute makes an image more or less memorable. Most importantly, we evaluated our proposed method for both real and unreal (generated) face images. The proposed method successfully modifies and controls the memorability of real human faces as well as unreal (generated) faces. Our proposed method can be employed in photograph editing applications for social media, learning aids, or advertisement purposes.