
Seizure Detection Using Deep Learning, Information Theoretic Measures and Factor Graphs
Abstract
Epilepsy is a common neurological disorder that disrupts normal electrical activity in the brain causing severe impact on patients’ daily lives. Accurate seizure detection based on long-term time-series electroencephalogram (EEG) signals has gained vital importance for epileptic seizure diagnosis. However, visual analysis of these recordings is a time-consuming task for neurologists. Therefore, the purpose of this thesis is to propose an automatic hybrid model-based /data-driven algorithm that exploits inter-channel and temporal correlations. Hence, we use mutual information (MI) estimator to compute correlation between EEG channels as spatial features and employ a carefully designed 1D convolutional neural network (CNN) to extract additional information from raw EEGs. Then, seizure probabilities from combined features of MI estimator and CNN are applied to factor graphs to learn factor nodes. The performance of the algorithm is evaluated through measuring different parameters as well as comparing with previous studies. On CHB-MIT dataset, our generalized algorithm achieves state-of-the-art performance.