
Genus Bounds for Some Dynatomic Modular Curves
Abstract
We prove that for every $n \ge 10$ there are at most finitely many values $c \in \mathbb{Q} $ such that the quadratic polynomial $x^2 + c$ has a point $\alpha \in \mathbb{Q} $ of period $n$. We achieve this by proving that for these values of $n$, every $n$-th dynatomic modular curve has genus at least two.
This item has been relocated to Western University’s Open Repository