
Machine Learning Prediction of Mechanical and Durability Properties of Recycled Aggregates Concrete
Abstract
Whilst recycled aggregate (RA) can alleviate the environmental footprint of concrete production and the landfilling of colossal amounts of demolition waste, there need for robust predictive tools for its effects on mechanical and durability properties. In this thesis, state-of-the-art machine learning (ML) models were deployed to predict properties of recycled aggregate concrete (RAC). A systematic review was performed to analyze pertinent ML techniques previously applied in the concrete technology field. Accordingly, three different ML methods were selected to determine the compressive strength of RAC and perform mixture proportioning optimization. Furthermore, a gradient boosting regression tree was used to study the effects of RA and several types of binders on the carbonation depth of RAC. The ML models developed in this study demonstrated robust performance to predict diverse properties of RAC.