Electronic Thesis and Dissertation Repository

A New Approach for Homomorphic Encryption with Secure Function Evaluation on Genomic Data

Mounika Pratapa, The University of Western Ontario

Abstract

Additively homomorphic encryption is a public-key primitive allowing a sum to be computed on encrypted values. Although limited in functionality, additive schemes have been an essential tool in the private function evaluation toolbox for decades. They are typically faster and more straightforward to implement relative to their fully homomorphic counterparts, and more efficient than garbled circuits in certain applications. This thesis presents a novel method for extending the functionality of additively homomorphic encryption to allow the private evaluation of functions of restricted domain. Provided the encrypted sum falls within the restricted domain, the function can be homomorphically evaluated “for free” in a single public-key operation. We will describe an algorithm for encoding private functions into the public-keys of two well-known additive cryptosystems. We extend this scheme to an application in the field of pharmacogenomics called Similar Patient Query. With the advent of human genome project, there is a tremendous availability of genomic data opening the door for a possibility of many advances in the field of medicine. Precision medicine is one such application where a patient is administered drugs based on their genetic makeup. If the genomic data is not kept private, it can lead to several information frauds, so it needs to be encrypted. To tap the full potential of the encrypted genomic data, we need to perform computations on it without compromising its security. For SPQ, we pick a query genome and compare it across a hospital data base, to find patients similar to that of the query and use the information to apply precision medicine, all of this is carried out under privacy preserving settings in the presence of a semi-honest adversary in a single transaction.