
Network Resource and Performance Optimization in Autonomous Systems: A Connected Vehicles and Autonomous Networks Perspective
Abstract
This thesis covers two topics that optimize a network-related problem subject to environment-specific constraints; placing vehicular applications and executing network traffic assignment changes. The first topic introduces an optimization model, Resource and Delay-aware V2X service Placement (RDP), and a baseline approach that only considers the resource requirements of vehicular services. Both are responsible for placing vehicular services used by vehicular applications in an edge computing environment. Under different simulation scenarios, the results obtained by RDP satisfy the delay requirements of vehicular applications as opposed to the baseline approach. The second topic examines the efficient execution of inter-domain traffic changes under bandwidth, monetary, and infrastructural constraints. An oracle algorithm and two heuristics are formulated, and evaluation criteria are devised to reflect the constraints. These algorithms are evaluated on different networks, and the results reported show that OrderSteps (OSS) heuristic satisfies the constraints and outperforms the oracle implementation in terms of run-time.