Electronic Thesis and Dissertation Repository

Development Of Hybrid Coating Materials To Improve The Success Of Titanium Implants

Zach Gouveia, The University of Western Ontario

Abstract

While titanium (Ti) and its alloys have become ubiquitous within implantology as materials to restore or augment the function of human tissues, their success is plagued by complications associated with infection and aseptic implant loosening. These two risks account for the majority of implant failures in the clinic and limit the long-term success of titanium implants in vivo. Therefore, this thesis describes the development of robust multifunctional class II organic-inorganic hybrid coating materials for titanium implants that could be used to effectively target both complications, concurrently. During this master’s work, two different coating systems were examined. First, class II hybrid coating materials composed of chitosan and silica loaded with silver nanoparticles were investigated. These coatings displayed a high resistance to fracture, great substrate adhesion and inhibited the growth of two clinically relevant pathogenic bacteria (E. coli and S. aureus) in both biofilm and planktonic cultures. Secondly, a novel class II hybrid coating material was developed that was composed of polyethylene glycol, calcium, and silica and loaded with silver nanoparticles. This hybrid bioactive glass material possessed similar mechanical and antimicrobial properties to the chitosan-silica coatings and displayed an increased bioactive response. From this study, a better understanding of the feasibility of class II hybrid materials as implant coatings was developed. The work presented in this work may afford a novel strategy in improving the success of implants for biomedical applications.