Electronic Thesis and Dissertation Repository

Strategies for Ultraprecise Single Point Cutting of V-grooves

Delfim A C Joao, The University of Western Ontario

Abstract

V-groove microstructures have found numerous functionalization applications in mechanical, electronic, photonic, biomechanical and optical components. However, despite their wide use, the manufacturing processes associated with their fabrication are limited to axial strategies with a constant depth of cut that do not allow the control of the cutting force and cutting time, and therefore leading to significant micro-burrs as well as an inability to fabricate high aspect ratio grooves. The current thesis addresses this problem with the development of three cutting strategies that make use of a single point cutting process. The study to be detailed herein includes analytical, numerical and experimental approaches with respect to cross-sectional area calculations, tool path planning, finite element modelling as well as experimental measurements of the cutting force and surface roughness. The results revealed that a relationship exists between the number of passes/depth of cut and the magnitude of cutting force as measured along the feed direction as well as the existence of a relationship between chip thickness and surface quality. The developed cutting strategies proved to be efficient in manufacturing of symmetrical V-groove microstructures and augmented the field of micromachining with alternative cutting strategies.