Designing An Optimal HIV-1 Env Immunogen For The Vesicular Stomatitis Virus Vaccine Platform And Elucidating The Role Of HIV-1 Nef In Env Trafficking
Abstract
Current vesicular stomatitis virus (VSV)-based HIV vaccines require an optimal HIV envelope immunogen to improve protection in vivo. Furthermore, the involvement of viral proteins, such as HIV Nef, in the trafficking of HIV Env to sites of viral assembly remains poorly understood and may provide additional insights for the design of a VSV-based HIV vaccine. We constructed new codon-optimized chimeric Env immunogens containing the signal sequence of honeybee melittin and the transmembrane and cytoplasmic tail domains of SIV, Zaire Ebola, or VSV glycoproteins. We showed that all chimeric Env immunogens had enhanced expression levels within producer cells. Utilizing bimolecular fluorescence complementation for intracellular protein-protein interactions, we identified a potential Env:Nef complex, which was disrupted by well-characterized Nef mutants. Overall, we have generated new highly expressing chimeric HIV-1 Env immunogens prepared for testing in the VSV vaccine platform and have shown evidence for a potential Env:Nef interaction within Env trafficking pathways.