Degree
Doctor of Philosophy
Program
Medical Biophysics
Supervisor
Chen, Jeff Z.
2nd Supervisor
Battista, Jerry J.
Joint Supervisor
Abstract
External beam radiotherapy (EBRT) plays a vital role in the treatment of cancer, with close to half of all cancer patients receiving EBRT at some point over their course of treatment. Although EBRT is a well-established form of treatment, there are a number of ways in which EBRT could still be improved in terms of quality and efficiency for treatment planning and radiation dose delivery. This thesis reports a series of improvements made to EBRT.
First, we developed and evaluated a new treatment planning technique called unified intensity-modulated arc therapy (UIMAT) which combines the optimization and delivery of rotational volumetric modulated arc therapy (VMAT) and fixed-gantry intensity-modulated radiation therapy (IMRT). When retrospectively compared to clinical treatment plans using VMAT or IMRT alone, UIMAT plans reduced the dose to nearby critical structures by as much as 23% without compromising tumour volume coverage. The UIMAT plans were also more efficient to deliver. The reduction in normal tissue dose could help lower the probability of treatment-related toxicities, or alternatively could be used to improve tumour control probability, via dose escalation, while maintaining current dose limits for organs at risk.
Second, we developed a new fast inverse direct aperture optimization (FIDAO) algorithm for IMRT, VMAT, and UIMAT treatment planning. FIDAO introduces modifications to the direct aperture optimization (DAO) process that help improve its computational efficiency. As demonstrated in several test cases, these modifications do not significantly impact the plan quality but reduced the DAO time by as much as 200-fold. If implemented with graphical processing units (GPUs), this project may allow for applications such as on-line treatment adaptation.
Third, we investigated a method of acquiring tissue density information from cone-beam computed tomography (CBCT) datasets for on-line dose calculations, plan assessment, and potentially plan adaptation using FIDAO. This calibration technique accounts for patient-specific scattering conditions, demonstrated high dosimetric accuracy, and can be easily automated for on-line plan assessment.
Collectively, these three projects will help reduce the normal tissue doses from EBRT, improve the planning and delivery efficiency, and pave the way for application like on-line plan assessment and adaptive radiotherapy in response to anatomical changes.
Recommended Citation
MacFarlane, Michael, "Towards on-line plan adaptation of unified intensity-modulated arc therapy using a fast-direct aperture optimization algorithm" (2019). Electronic Thesis and Dissertation Repository. 6142.
https://ir.lib.uwo.ca/etd/6142
Exam Certificate