Electronic Thesis and Dissertation Repository

Degree

Master of Science

Program

Computer Science

Supervisor

Moreno Maza, Marc

Abstract

Polynomials may be represented sparsely in an effort to conserve memory usage and provide a succinct and natural representation. Moreover, polynomials which are themselves sparse – have very few non-zero terms – will have wasted memory and computation time if represented, and operated on, densely. This waste is exacerbated as the number of variables increases. We provide practical implementations of sparse multivariate data structures focused on data locality and cache complexity. We look to develop high-performance algorithms and implementations of fundamental polynomial operations, using these sparse data structures, such as arithmetic (addition, subtraction, multiplication, and division) and interpolation. We revisit a sparse arithmetic scheme introduced by Johnson in 1974, adapting and optimizing these algorithms for modern computer architectures, with our implementations over the integers and rational numbers vastly outperforming the current wide-spread implementations. We develop a new algorithm for sparse pseudo-division based on the sparse polynomial division algorithm, with very encouraging results. Polynomial interpolation is explored through univariate, dense multivariate, and sparse multivariate methods. Arithmetic and interpolation together form a solid high-performance foundation from which many higher-level and more interesting algorithms can be built.

Share

COinS