Electronic Thesis and Dissertation Repository

Conformational Arrangements of UbcH7-Ubiquitin with OspG and Parkin

Tara E. C. Condos, The University of Western Ontario

Abstract

The E2-ubiquitin conjugate is a key regulator of ubiquitination and is therefore an important component of cellular homeostasis. Disruptions to proper E2-ubiquitin functioning have implications in diseases such as shigellosis and Parkinson’s disease discussed here. E2-ubiquitin conjugates like UbcH7-ubiquitin are extremely dynamic and can adopt multiple conformations in solution or bound to target proteins. However, the conformational arrangements that UbcH7-ubiquitin adopts while free in solution, bound to the shigellosis-associated kinase OspG or to the Parkinson’s disease-related E3 ligase parkin are unknown. Also unknown, is a mechanistic explanation for how UbcH7-ubiquitin interactions with OspG and parkin are associated with disease. Here, we determined the crystal structure of OspG bound to UbcH7-ubiquitin, the crystal structure of autoinhibited full-length human parkin with and without a phosphorylation-mimetic, the crystal and NMR structures of activated full-length human parkin bound to a phosphorylated-ubiquitin molecule, and an NMR structure of activated human parkin bound to both phosphorylated-ubiquitin and UbcH7-ubiquitin. This work determined that UbcH7-ubiquitin predominantly occupies closed states in solution but binds to OspG and parkin in open conformations. Further key findings include showing that UbcH7-ubiquitin is a biological target of OspG and that OspG involvement in shigellosis is to halt host ubiquitination by competitively binding to UbcH7-ubiquitin in a way that mimics host HECT E3 binding. We showed that parkin is autoinhibited through interdomain interactions. Phosphorylation of autoinhibited parkin primes phosphorylated-ubiquitin binding and this binding relieves autoinhibition by inducing allosteric rearrangements in parkin to allow subsequent UbcH7-ubiquitin engagement. Finally, we showed that certain hereditary variants in parkin are likely associated with autosomal recessive juvenile parkinsonism due to a loss in the ability to interact with UbcH7-ubiquitin. Research here has significant implications for understanding the basis of shigellosis and hereditary forms of Parkinson’s disease, and has contributed significant molecular understandings for the use in developing therapeutics.