Electronic Thesis and Dissertation Repository

Degree

Doctor of Philosophy

Program

Anatomy and Cell Biology

Supervisor

Dr. Timothy D. Wilson

2nd Supervisor

Dr. Andrew J. Nelson

Joint Supervisor

Abstract

This dissertation explored the relationship between internal and external visualizations and the implications of this relationship for comprehending visuospatial anatomical information. External visualizations comprised different computer representations of anatomical structures, including: static, animated, non-interactive, interactive, non-stereoscopic, and stereoscopic visualizations. Internal visualizations involved examining participants’ ability to apprehend, encode, and manipulate mental representations (i.e., spatial visualization ability or Vz). Comprehension was measured with a novel spatial anatomy task that involved mental manipulation of anatomical structures in three-dimensions and two-dimensional cross-sections. It was hypothesized that performance on the spatial anatomy task would involve a trade-off between internal and external visualizations available to the learner.

Results from experiments 1, 2, and 3 demonstrated that in the absence of computer visualizations, spatial visualization ability (Vz) was the main contributor to variation in spatial anatomy task performance. Subjects with high Vz scored higher, spent less time, and were more accurate than those with low Vz. In the presence of external computer visualizations, variation in task performance was attributed to both Vz and visuospatial characteristics of the computer visualization. While static representations improved performance of high- and low-Vz subjects equally, animations particularly benefited high Vz subjects, as their mean score on the SAT was significantly higher than the mean score of low Vz subjects. The addition of interactivity and stereopsis to the displays offered no additional advantages over non-interactive and non-stereoscopic visualizations. Interactive, non-interactive, stereoscopic and non-stereoscopic visualizations improved the performance of high- and low-Vz subjects equally.

It was concluded that comprehension of visuospatial anatomical information involved a trade-off between the perception of external visualizations and the ability to maintain and manipulate internal visualizations. There is an inherent belief that increasing the educational effectiveness of computer visualizations is a mere question of making them dynamic, interactive, and/or realistic. However, experiments 1, 2, and 3 clearly demonstrate that this is not the case, and that the benefits of computer visualizations vary according to learner characteristics, particularly spatial visualization ability.

Included in

Anatomy Commons

Share

COinS