Degree
Master of Science
Program
Geography
Supervisor
Dr. James A Voogt
Abstract
This thesis presents a method for deriving time-continuous urban surface temperature and heat island assessments from hemispherical ground-based measurements of upwelling thermal radiation. The method, developed to overcome geometric and temporal biases inherent in traditional thermal remote sensing of urban surface climates, uses a sensor view model in conjunction with a radiative transfer code to derive atmospherically corrected, hemispherical radiometric urban surface temperatures. These are used to derive two long-term climatologies of surface urban heat island (sUHI) magnitudes for Basel, Switzerland and Vancouver, Canada. sUHI development shows significant variation based on time-of-day, season, and ambient and synoptic conditions. Results also show large differences in remote sensed sUHI from hemispherical, nadir and complete representations of the urban surface, with a nadir view overestimating seasonal sUHImax from a complete view by nearly a factor of two. In contrast, a hemispherical view provides significantly more representative, time-continuous urban surface temperature and sUHI analysis.
Recommended Citation
Allen, Michael A., "A Method for Hemispherical Ground Based Remote Sensing of Urban Surface Temperatures" (2017). Electronic Thesis and Dissertation Repository. 4594.
https://ir.lib.uwo.ca/etd/4594