Degree
Master of Science
Program
Geography
Supervisor
Jacek Malczewski
Abstract
Volunteered geographic information (VGI) has been applied in many fields such as participatory planning, humanitarian relief and crisis management because of its cost-effectiveness. However, coverage and accuracy of VGI cannot be guaranteed. OpenStreetMap (OSM) is a popular VGI platform that allows users to create or edit maps using GPS-enabled devices or aerial imageries. The issue of geospatial data quality in OSM has become a trending research topic because of the large size of the dataset and the multiple channels of data access. The objective of this study is to examine the overall reliability of the Canadian OSM data. A systematic review is first presented to provide details on the quality evaluation process of OSM. A case study of London, Ontario is followed as an experimental analysis of completeness, positional accuracy and attribute accuracy of the OSM street networks. Next, a national study of the Canadian OSM data assesses the overall semantic accuracy and lineage in addition to the quality measures mentioned above. Results of the quality evaluation are compared with associated OSM provenance metadata to examine potential correlations. The Canadian OSM road networks were found to have comparable accuracy with the tested commercial database (DMTI). Although statistical analysis suggests that there are no significant relations between OSM accuracy and its editing history, the study presents the complex processes behind OSM contributions possibly influenced by data import and remote mapping. The findings of this thesis can potentially guide cartographic product selection for interested parties and offer a better understanding of future quality improvement in OSM.
Recommended Citation
Zhang, Hongyu, "Quality Assessment of the Canadian OpenStreetMap Road Networks" (2017). Electronic Thesis and Dissertation Repository. 4560.
https://ir.lib.uwo.ca/etd/4560
Included in
Geographic Information Sciences Commons, Other Computer Sciences Commons, Spatial Science Commons