Degree
Doctor of Philosophy
Program
Computer Science
Supervisor
Dr. Steven Beauchemin
Abstract
World-wide injuries in vehicle accidents have been on the rise in recent
years, mainly due to driver error. The main objective of this research is to
develop a predictive system for driving maneuvers by analyzing the cognitive
behavior (cephalo-ocular) and the driving behavior of the driver (how the vehicle
is being driven). Advanced Driving Assistance Systems (ADAS) include
different driving functions, such as vehicle parking, lane departure warning,
blind spot detection, and so on. While much research has been performed on
developing automated co-driver systems, little attention has been paid to the
fact that the driver plays an important role in driving events. Therefore, it
is crucial to monitor events and factors that directly concern the driver. As
a goal, we perform a quantitative and qualitative analysis of driver behavior
to find its relationship with driver intentionality and driving-related actions.
We have designed and developed an instrumented vehicle (RoadLAB) that is
able to record several synchronized streams of data, including the surrounding
environment of the driver, vehicle functions and driver cephalo-ocular behavior,
such as gaze/head information. We subsequently analyze and study the
behavior of several drivers to find out if there is a meaningful relation between
driver behavior and the next driving maneuver.
Recommended Citation
Zabihi, Seyed Mohsen, "Developing Predictive Models of Driver Behaviour for the Design of Advanced Driving Assistance Systems" (2017). Electronic Thesis and Dissertation Repository. 4431.
https://ir.lib.uwo.ca/etd/4431