Degree
Master of Science
Program
Medical Biophysics
Supervisor
Dr. Graham J. W. King
2nd Supervisor
Dr. James A. Johnson
Joint Supervisor
Abstract
Elbow lateral collateral ligament (LCL) injuries frequently arise following trauma, and can result in disabling instability. Typically such injuries are managed with immobilization followed by a graduated exercise regime; however there is minimal biomechanical evidence to support current treatment protocols. This investigation examines the in vitro effectiveness of several rehabilitation techniques using a custom elbow motion simulator. It was found that active range of motion is safest in the overhead position (n = 7). Early motion in this position may reduce the incidence of elbow stiffness without compromising ligament healing following LCL injury. Forearm pronation and active motion stabilize the LCL-deficient elbow, while varus positioning worsens instability. It was also found that a hinged elbow orthosis did not significantly improve in vitro elbow stability following LCL injury (n = 7). However, such orthoses may be useful in keeping the forearm in the more stable pronated position. Future research directions are proposed, with suggestions on applying this methodology to other elbow injuries.
Recommended Citation
Manocha, Ranita Harpreet Kaur, "Optimizing the Rehabilitation of Elbow Lateral Collateral Ligament Injuries" (2016). Electronic Thesis and Dissertation Repository. 3634.
https://ir.lib.uwo.ca/etd/3634
Included in
Biomechanical Engineering Commons, Medical Biophysics Commons, Occupational Therapy Commons, Orthopedics Commons, Orthotics and Prosthetics Commons, Physical Therapy Commons, Sports Medicine Commons